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Enumerations of Lattice Animals and Trees

Iwan Jensen1

Received April 10, 2000; final July 19, 2000

We have developed an improved algorithm that allows us to enumerate the
number of site animals on the square lattice up to size 46. We also calculate the
number of lattice trees up to size 44 and the radius of gyration of both lattice
animals and trees up to size 42. Analysis of the resulting series yields an
improved estimate, *=4.062570(8), for the growth constant of lattice animals,
and, *0=3.795254(8), for the growth constant of trees, and confirms to a very
high degree of certainty that both the animal and tree generating functions have
a logarithmic divergence. Analysis of the radius of gyration series yields the
estimate, &=0.64115(5), for the size exponent.
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1. INTRODUCTION

The enumeration of lattice animals is a classical combinatorial problem of
great interest in it own right. (1) Lattice animals are connected subgraphs of
a lattice. A site animal can be viewed as a finite set of lattice sites connected
by a network of nearest neighbor bonds. The fundamental problem is the
calculation (up to translation) of the number of animals, an , with n sites.
In the physics literature lattice animals are often called clusters due to
their close relationship to percolation problems.(2) Series expansions for
various percolation properties, such as the percolation probability or the
average cluster size, can be obtained as weighted sums over the number of
lattice animals, gn, m , enumerated according to the number of sites n and
perimeter m.(3, 4) In mathematics, and combinatorics in particular, the term
polyominoes is frequently used. A polyomino is a set of lattice cells joined
at their edges. So polyominoes are identical to site animals on the dual lattice.
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Furthermore, the enumeration of lattice animals has traditionally served as
a benchmark for computer performance and algorithm design.(5�12)

Lattice trees form a proper subset of lattice animals, and can be
defined as those animals containing no circuits. Another way of defining
trees is that a tree is a finite connected set of sites with the property that
a walk starting from any given site cannot return to the original site
without self-intersections. Lattice trees have been suggested as a model of
branched polymers.(13) Lattice animals and trees are expected to belong to
the same universality class(13, 14) and thus have the same critical exponents.

An algorithm for the calculation of gn, m has been published by Martin (6)

and Redner.(8) It was used by Sykes and co-workers to calculate series
expansions for percolation problems on various lattices. In particular Sykes
and Glen(4) calculated gn, m up to n=19 on the square lattice, and thus
obtained the number of lattice animals, an=�m gn, m , to the same order.
Redelmeier(7) presented an improved algorithm for the enumeration of
lattice animals and extended the results to n=24. This algorithm was later
used by Mertens(10) to devise an improved algorithm for the calculation of
gn, m and a parallel version of the algorithm appeared a few years later.(11)

The next major advance was obtained by Conway(12) who used the finite
lattice method with an associated transfer-matrix algorithm to calculate an

and numerous other series up to n=25.(15) In unpublished work Oliveira
e Silva(16) used the parallel version of the Redelmeier algorithm (11) to
extend the enumeration to n=28. In this work we use an improved version
of Conway's algorithm to extend the enumeration to n=46. We also
calculate the number of lattice trees up to n=44 and the radius of gyration
of lattice animals and trees up to n=42.

The quantities and functions we consider in this paper are: (i) the
number of lattice animals an and the associated generating function,
A(u)=� anun; (ii) the number of lattice trees tn with generating function,
T(u)=� tnun; and (iii) the mean-square radius of gyration of animals or
trees of size n, (R2) n . These quantities are expected to behave as

an=A*nn&{[1+o(1)]

tn=T*n
0 n&{[1+o(1)] (1)

(R2) n=Rn2&[1+o(1)]

where * and *0 are the reciprocals u&1
c of the critical point of, respectively,

the animal and tree generating functions. From numerical evidence it is
well-established that {=1.

In Section 2 we give a detailed description of the finite lattice method
for enumerating lattice animals. Some initial results of the analysis of the
series are presented in Section 3.
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2. ENUMERATIONS OF LATTICE ANIMALS AND TREES

The method we use to enumerate site animals and trees on the square
lattice is based on the method used by Conway(12) for the calculation of
series expansions for percolation problems, and is similar to methods
devised by Enting for enumeration of self-avoiding polygons(17) or the algo-
rithm used by Derrida and De Seze to study percolation and lattice
animals.(18) In the following we give a detailed description of the algorithm
used to count lattice animals. We then show how to generalise the method
to calculate the radius of gyration and obtain series for lattice trees.

2.1. Transfer Matrix Algorithm

The number of animals that span rectangles of width W and length L
are counted using a transfer matrix algorithm. By combining the results for
all W_L rectangles with W�Wmax and W+L�2Wmax+1 we can count
all animals up to n=2Wmax . Due to symmetry we only consider rectangles
with L�W and thus count the contributions for rectangles with L>W
twice.

The transfer matrix technique involves drawing a boundary line
through the rectangle intersecting a set of W sites. For each configuration
of occupied or empty sites along the boundary we maintain a generating
function for partially completed animals intersecting the boundary in that
particular pattern. Animals in a given rectangle are enumerated by moving
the boundary so as to add one site at a time, as shown in Fig. 1. Each con-
figuration can be represented by a set of states [_i ], where the value of the
state _i at position i must indicate first of all if the site is occupied or
empty. An empty site is simply indicated by _i=0. Since we have to ensure
that we count only connected graphs more information is required if a site
is occupied. In short we need a way of describing which other occupied
sites on the boundary it is connected to via a set of occupied sites to the
left of the boundary. The most compact encoding of this connectivity is(12)

0 empty site

1 occupied site not connected to others on the boundary

_i={2 first among a set of connected boundary sites (2)

3 intermediate among a set of connected boundary sites

4 last among a set of connected boundary sites

Configurations are read from the bottom to the top. As an example the
configuration along the boundary of the partially completed animal in
Fig. 1 is [102023404].
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Fig. 1. A snapshot of the intersection (solid line) during the transfer matrix calculation on
the square lattice. Animals are enumerated by successive moves of the kink in the boundary,
as exemplified by the position given by the dashed line, so that one site at a time is added to
the rectangle. To the left of the boundary we have drawn an example of a partially completed
animal. Numbers along the boundary indicate the encoding of this particular configuration.

In addition to the configuration of states along the boundary line we
also have to specify whether or not the partially completed animals include
sites on the lower and�or upper borders of the rectangle. This can simply
be done by marking a configuration with a 0 if none of the borders have
been touched, and a 1, 2 or 3 if, respectively, the lower border, upper
border or both borders have been touched. In this way we can be sure to
count only those animals which span a given rectangle in the vertical direc-
tion. That all animals span the horizontal direction is ensured by the set
updating rules detailed below.

The total configuration of occupied sites and the touching of the
borders can be encoded by a pair of integers (S, k), where k indicates
which borders have been touched, and S is the integer whose binary repre-
sentation is obtained by assigning 3 bits to each _i in the configuration of
occupied sites, S=�W&1

i=0 _i8
i. We shall call such a (S, k)-pair a signature,

and in practise represent it by an integer S� =S+k V 8W. For W�20 a
signature can thus conveniently be stored in the computer as a 64-bit
integer, while for W>20 we need to switch to a more complicated
representation, say, in terms of several 16-bit integers. Often we shall
explicitly write out the configuration [_i ] instead of S and use the notation
[S1S2] to indicate a configuration obtained by concatenating the strings
S1 and S2 .
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The major improvement of the method used to enumerate animals in
this paper is that we require animals to span the rectangle in both direc-
tions. In the original approach(12) animals were only required to span in
the lengthwise direction and animals of width less than W were generated
many times. It is however easy to obtain the animals of width exactly W
and length exactly L from this enumeration.(17) The only drawback of the
new approach is that for most configurations we have to use four distinct
generating functions. The major advantage is that the memory requirement
of the algorithm is exponentially smaller.

Realizing the full savings in memory usage comes from two enhan-
cements to the original algorithm. Firstly, for each configuration we keep
track of the current minimum number of occupied sites Ncur which have
been inserted to the left of the intersection in order to build up that
particular configuration. Secondly, we calculate the minimum number of
additional sites Nadd required to produce a valid animal. There are three
contributions, namely the number of sites required to connect all the
separate pieces of the partially completed animal, the number of sites
needed to ensure that the animal touches both the lower and upper bound-
ary, and finally the number of sites needed to extend at least W columns
in the length-wise direction. If the sum Ncur+Nadd>2Wmax , we can dis-
card the partial generating function for that configuration because it won't
make a contribution to the animal count up to the size we are trying to
obtain. Furthermore, for any W we know that contributions will start at
2W&1 since the smallest animals have to span a W_W rectangle. So for
each configuration we need only retain 2(Wmax&W )+1 terms of the
generating functions. With the original algorithm contributions started at W
because the animals were required to span only in the length-wise direction.

2.1.1. Derivation of Updating Rules

In Table I we have listed the possible local ``input'' states and the ``out-
put'' states which arise as the kink in the boundary is propagated by one
step. The most important boundary site is the ``lower'' one situated at the
bottom of the kink (the site marked with the second ``2'' in Fig. 1). This is
the position in which the lattice is being extended and obviously the new
site can be either empty or occupied. The second most important boundary
site is the ``upper'' one at the top of the kink (the site marked ``3'' in Fig. 1).
The state of the upper site is very important in determining the state of the
lower site when occupied. The state of the upper site is likely to be changed
as a result of the move. In addition the state of a site further afield may
have to be changed if a branch of a partially completed animal terminates
at the new site or if two independent components of a partially completed
animal join at the new site. In the following we give the details of how
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Table I. The Various ``Input'' States and the ``Output'' States Which Arise as
the Boundary Line Is Moved in Order to Include One More Site of the Lattice.
Each Panel Contains Two ``Output'' States Where the Left (Right) Most Is the

Configuration in Which the New Site Is Empty (Occupied)

Lower�Upper 0 1 2 3 4

0 00 10 01 24 02 23 03 33 04 34

1 add 10 �� 24 �� 23 �� 33

2 00 20 01 23 02 23@ 02 23 01 24

3 00 30 01 33 02 33@ 03 33 04 34

4 00 40 01 34 02 33 03 33@

some of these updating rules are derived. We shall refer to the signature
before the the move as the ``source'' and a signature produced as a result
of the move as a ``target.''

00: The lower and upper sites are empty. If the new site is empty the
signature is unchanged. If the new site is occupied it isn't connected to
other sites in the boundary and is in state 1. From the source configuration
[S100S2] we get the targets [S1 00S2] and [S110S2].

01: The lower site is empty and the upper site is isolated. If the new
site is empty the signature is unchanged. If the new site is occupied it is
connected to the upper site and is in state 2 while the state of the upper
site is changed to state 4.

02: When the new site is occupied it is connected to the upper site.
The state of the lower site becomes 2 (the new first site in the set) while the
state of the upper site is changed to 3 (it is now an intermediate site).

10: The lower site was an isolated occupied site so if the new site is
empty we have created a separate graph. This is only allowed if there are
no other occupied sites on the boundary line (otherwise we generate graphs
with separate components) and if both the lower and upper borders have
been touched. The result are valid lattice animals. The generating function
is accumulated into the final animal generating function. If the new site is
occupied it isn't connected to other sites in the boundary and is therefore
still in state 1.

11: The new site has to be occupied and it is connected to the upper
site. The new site is in state 2 while the state of the upper site is changed
to state 4.

14: This situation never occur. The upper site is the last among a set
of occupied sites. This implies that the site immediately to the left of the
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upper site is occupied, this in turn is connected to the lower site, which
therefore cannot be an isolated occupied site.

20: The lower site is the first among a set of occupied sites, so if the
new site is empty, another site in this set changes its state. Either the first
intermediate site becomes the new first site, and its state is changed from
3 to 2, or, if there are no intermediate sites, the last site becomes an
isolated occupied site, and its state is changed from 4 to 1. Note that there
could be connected parts of the animal interspersed between the first site
and the matching intermediate or last site, so locating the site which has
to be changed requires a little computation. This is illustrated in Fig. 1
where the first 2 is connected to the last 4, and a piece of the animal is
placed in between these two sites. In this example if the first 2 became a 0
the last 4 becomes a 1, while if the second 2 becomes a 0 the 3 above it
becomes a 2. In general the nesting can be quite complicated and the
general rule for updating the configuration is as follows: Start from the 2,
which we are changing to a 0, and move upwards in the configuration.
Count the number of 2's and 4's as we pass them. If an equal number has
been passed and we encounter a 3 or 4 this is the matching site we are
looking for and it is changed either to 2 or 1. This change of a matching
site is indicated in Table I by over-lining. When the new site is occupied the
configuration is unchanged. So from the source [S120S2] we get the
targets [S100S2 ] and [S1 20S2].

22: The updating when the new site is empty is as before. When the
new site is occupied the connectivity is altered since we are joining two
separate pieces of the animal. The new site remains the first site in the
joined piece while the upper site becomes an intermediate site. The last site
in the set of connected sites starting at the upper site also becomes an inter-
mediate site in the joined piece. Locating this site is similar to the operation
indicated by over-lining. However, in this case we ignore sites in state 3
and the matching site in state 4 becomes a 3. We indicate this type of trans-
formation by putting a hat over the string. The source [S122S2] gives rise
to the targets [S102S2 ] and [S1 23S� 2].

40: When the new site is empty we must change a matching site,
either an intermediate site to a last site or a first site to an isolated
occupied site. The transformation is similar to the case 20, but we have to
search downwards in the configuration.

43: When the new site is occupied we change the connectivity. The
first site, from the set of sites connected to the lower site, is changed to an
intermediate site. This transformation is similar to the ``hat'' transformation
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described at case 22, but we now have to search downwards in the con-
figuration.

44: This can't happen for the same reason that 14 is impossible.

2.1.2. The Algorithm

As a new site is added to the lattice we construct a new set of partial
generating functions from the existing set. This can be done by running
through all members of the existing set. Using bit-masking we can extract
the states of the lower and upper sites and then apply the relevant updating
rules, which generate at most 2 target signatures. First we check if the
signature already exists, if so the generating functions of the source and
target are added (with an addition weight factor a on the source if the new
site is occupied). If the signature doesn't exist already, we check whether or
not it makes a contribution, that is, we see if Ncur+Nadd�2Wmax (Ncur of
the target is Ncur of the source if the new site is empty and Ncur+1
otherwise). If the target makes a contribution it is assigned a storage posi-
tion and its generating function is the generating function of the source
(again with an extra factor of u if the new site is occupied). When the target
generating functions have been created the storage position of the source
generating function is released since it is no longer required and thus can
be recycled.

The algorithm for the enumeration of animals spanning a W_L strip is:

1. Start by inserting an isolated occupied site in the top left corner.
This configuration has the signature (8W&1, 2), which enters with a count
of 1.

2. For j from 2 to W&1 add a site to the lattice in the first column.
Run through all existing signatures using the updating rules described
above (note that as this is the first column the lower site is always empty).
Add an additional configuration with a single occupied site at position
W& j with a count of 1. These configurations have the signature (8W& j, 0),
since none of the borders have been touched.

3. Put in the last site in the first column. Again we run through all
existing signatures. If the new site occupied we have to mark the signature
as having touched the lower border. Add an additional configuration with
a single occupied site in the lower left corner with a count of 1, the
signature is (1, 1).

4. Put in the top site in the next column. Run through all existing
signatures. Since we are at the top border we only use the updating rules
in Table I with the upper site in state 0 (obviously the lower site cannot
be in states 2 or 3). If the new site is occupied make sure that the signature
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is marked as having touched the upper border. In this generic case we do
not put in the additional configuration of a single isolated occupied site
since it would not touch the left-most border.

5. For j from 2 to W&1 add a site to the lattice in row W& j. Run
through all existing signatures using the updating rules. Again no isolated
occupied should be inserted.

6. Put in the last site in the column. If the new site is occupied
make sure that the signature is marked as having touched the lower border.

7. If the number of completed columns is less than L go to 4.

2.1.3. Computational Complexity

The algorithm has exponential complexity, that is the time required to
obtain the animals up to size n grows exponentially with n. Time and
memory requirements are basically proportional to the maximum number
of distinct configuration generated during a calculation. This in turn
depends on the maximum number of terms we wish to calculate and thus
on Wmax . In Fig. 2 we have shown how the maximal number of configura-
tions, NConf , grows with Wmax . From this it is clear NConf B aWmax, and
from the figure we estimate that a is a little larger than 2. Since we obtain

Fig. 2. The number of configurations required in order to count the number of lattice
animals correct up to twice the maximum width. The solid line is drawn as a guide to the eye
and would correspond to a growth rate of exactly 2.
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2Wmax terms the computational complexity grows exponentially with
growth constant - a. Note that this is much better than a direct enumera-
tion in which time requirements are proportional to the number of animals
and therefore has the growth constant, *&4.06..., of lattice animals. The
price we have to pay for a faster algorithm is that the memory requirement
also grows exponentially like Nconf , whereas in direct enumerations the
memory requirement typically grows like a polynomial in the number of
terms.

2.1.4. Further Particulars

Finally a few remarks of a more technical nature. The number of con-
tributing configurations becomes very sparse in the total set of possible
states along the boundary line and as is standard in such cases one uses a
hash-addressing scheme.(19) Since the integer coefficients occurring in the
expansion become very large, the calculation was performed using modular
arithmetic.(20) This involves performing the calculation modulo various
prime numbers pi and then reconstructing the full integer coefficients at the
end. In order to save memory we used primes of the form pi=215&ri so
that the residues of the coefficients in the polynomials could be stored using
16 bit integers. The Chinese remainder theorem ensures that any integer
has a unique representation in terms of residues. If the largest integer
occurring in the final expansion is m, then we have to use a number of
primes k such that p1 p2 } } } pk>m. Up to 6 primes were needed to represent
the coefficients correctly.

2.2. Calculation of the Radius of Gyration

In the following we show how the definition of the radius of gyration
can be expressed in a form suitable for a transfer matrix calculation. As is
well-known the radius of gyration of n points at positions ri is

n2R2
n= :

i> j

(ri&rj )
2=(n&1) :

i

(x2
i + y2

i )&2 :
i> j

(x ix j+ yi yi ) (3)

This last expression is suitable for a transfer matrix calculation. As usual
we actually calculate the generating function, R2

g(u)=�n an(R2) n n2un,
since this ensures that the coefficients are integers. In order to do this we
have to maintain five partial generating functions for each signature,
namely

v A(u), the number of (partially completed) animals.

v R2(u), the sum over animals of the squared components of the
distance vectors.
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v X(u), the sum of the x-component of the distance vectors.

v Y(u), the sum of the y-component of the distance vectors.

v XY(u), the sum of the ``cross'' product of the components of the
distance vectors, e.g., � i> j (xix j+ y i y j ).

As the boundary line is moved to a new position each configuration
S might be generated from several configurations S$ in the previous bound-
ary position. The partial generation functions are updated as follows

A(u, S)=:
S$

un(S$)A(u, S$)

R2(u, S)=:
S$

un(S$)[R2(u, S$)+n(S$)(x2+ y2) A(u, S$)]

X(u, S)=:
S$

un(S$)[X(u, S$)+xn(S$) A(u, S$)] (4)

Y(u, S)=:
S$

un(S$)[Y(u, S$)+ yn(S$) A(u, S$)]

XY(u, S)=:
S$

un(S$)[XY(u, S$)+xn(S$) X(u, S$)+ yn(S$) Y(u, S$)]

where n(S$) is the number of occupied sites added to the animal.

2.3. Enumeration of Lattice Trees

Lattice trees can be enumerated in essentially the same manner as
animals. We merely get some further restrictions on the rules listed in
Table I. The necessary restriction is that the new site cannot be occupied
if the lower and upper sites already are connected, since this would
obviously result in the formation of a circuit. So in the cases ``23,'' ``24,''
``33,'' and ``34'' the new site cannot be occupied, otherwise the updating
rules are identical to those for animals.

3. ANALYSIS OF THE SERIES

The series listed in Table II have coefficients which grow exponen-
tially, with sub-dominant term given by a critical exponent. The generic
behaviour is gnt+nn!&1, and hence the generating function has the
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behaviour, G(u)=�n gnun
t(1&u�uc)

&!, where uc=1�+. From (1) we get
the following predictions for the animal generating functions:

A(u)=:
n

anun=A(u)(1&u*)1&{ (5)

R2
g(u)=:

n

an(R2) n n2un=:
n

rnun
tR(u)(1&u*)&({+2&+1) (6)

Similar expressions hold for the corresponding tree generating functions
though with a different growth constant *0 . So the animal and tree generat-
ing functions are expected to have a logarithmic singularity, while the
radius of gyration series are expected to diverge with an exponent 2+2&,
where we assumed the conjecture {=1 to be correct.

In the first stage of the analysis, we used the method of differential
approximants.(22) Estimates of the critical point and critical exponent were
obtained by averaging values obtained from second order inhomogeneous
differential approximants. In Table III we have listed the estimates
obtained from this analysis. The error quoted for these estimates reflects

Table III. Estimates for the Critical Point uc and Exponents 1&{ and 1+{+2&
Obtained from Second Order Inhomogeneous Differential Approximants to

the Series for the Generating Functions of Lattice Animals, Lattice Trees, and
Their Radius of Gyration. L Is the Order of the Inhomogeneous Polynomial

Square lattice site animals

L uc 1&{ uc 1+{+2&

0 0.246149987(43) &0.000523(46) 0.246150539(87) 3.28413(11)
2 0.24614992(14) &0.00043(14) 0.24615046(10) 3.28402(28)
4 0.24615007(15) &0.00055(16) 0.24615037(22) 3.28394(30)
6 0.24614999(24) &0.00046(25) 0.24615068(16) 3.28426(22)
8 0.24615001(15) &0.00052(13) 0.24615067(25) 3.28432(44)

10 0.24614997(22) &0.00044(28) 0.24615055(31) 3.28417(56)

Square lattice site trees

L uc 1&{ uc 1+{+2&

0 0.26348751(73) &0.00039(55) 0.263487100(52) 3.282325(42)
2 0.26348716(21) &0.00014(13) 0.263487033(57) 3.282276(35)
4 0.26348698(32) 0.00002(27) 0.263487029(58) 3.282276(35)
6 0.26348693(20) 0.00000(12) 0.263487079(17) 3.282308(12)
8 0.263486943(70) 0.000009(58) 0.263487061(32) 3.282297(20)

10 0.26348700(17) &0.00001(10) 0.263487059(19) 3.282296(13)
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the spread (basically one standard deviation) among the approximants.
Note that these error bounds should not be viewed as a measure of the true
error as they cannot include possible systematic sources of error. From this
we see that the animal generating function has a singularity at uc=
0.246150(1), and thus we obtain the estimate, *=4.06256(2), for the
growth constant. The exponent estimates are consistent with the expected
logarithmic divergence, thus confirming the conjecture {=1. The central
estimates of uc obtained from the radius of gyration series are a little larger
than, but nonetheless consistent with the animal generating function. From
this analysis we see that the series has a divergence at uc with an exponent
2+2&=3.2840(8), and thus &=0.6420(4).

The tree generating function has a singularity at uc=0.2634870(5),
and thus *0=3.795254(8), with the expected logarithmic divergence. In this
case estimates from the radius of gyration series yield 2+2&=3.2823(1),
and thus &=0.64115(5). Since the uc estimates from the two tree series are
in excellent agreement we claim that the best estimate for & is the one
obtained from the tree series. This estimate is consistent with, but much
more accurate than, the recent estimate &=0.642(2) obtained from Monte
Carlo simulations of lattice trees.(23) It is also consistent with the estimate
&=0.6408(3) obtained using phenomenological renormalization to lattice
animals.(18)

A more detailed analysis of the animal series was performed in ref. 21.
It showed that in a plot of exponent vs uc estimates, as 1&{ approach 0,
uc approach 0.2461497. From the spread among the approximants we
obtained the final estimate uc=0.2461496(5), and thus the growth constant
*=4.062570(8). A similar analysis of the radius of gyration series yielded
estimates of & consistent with those obtained for lattice trees.

Finally we use the series to derive improved rigorous lower bounds for
the growth constants of lattice animals and trees. Using concatenation
arguments Rands and Welsh(24) showed that if we define a sequence pn

such that

an+1= pn+1+ pna2+ } } } p3an&1+ p2 an (7)

and construct the generating functions

A*(u)=1+ :
�

n=1

an+1un (8)

and

P(u)= :
�

n=1

pn+1un (9)
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then

A*(u)=1+A*(u) P(u) (10)

and A*(u) is singular when P(u)=1. The coefficients in P(u) are
obviously known correctly to the same order N=2Wmax&1 as A*(u). If
we look at the polynomial PN obtained by truncating P(u) at order N then
the unique positive zero, 1�*N , of PN&1=0 is a lower bound for *. Using
our extended series we find that *�3.903184... .

For site trees the best lower bound appears to arise from a different
concatenation procedure, (25) which leads to the equation

T(u)=
2&Q(u)
1&2Q(u)

(11)

and T(u) is singular when Q(u)=1�2. This approach yields a lower bound
for site trees, *0�3.613957... .

4. CONCLUSION

We have presented an improved algorithm for the enumeration of site
animals on the square lattice. The computational complexity of the algo-
rithm is exponential with time (and memory) growing as an�2, where a
appears to be a little larger than 2. Implementing this algorithm has
allowed us to count the number of site animals up size 46. Our extended
series enables us to give an improved estimate for the growth constant and
confirm to a very high degree of certainty that the associated generating
function has a logarithmic divergence. The algorithm was also modified to
enumerate lattice trees up to size 44, and a generalised version was used to
calculate the radius of gyration of animals and trees up to size 42. Analysis
of the series confirmed that animals and trees belong to the same univer-
sality class and an accurate estimate was obtained for the size exponent &.

E-MAIL OR WWW RETRIEVAL OF SERIES

The series for the generating functions studied in this paper can be
obtained via e-mail by sending a request to I.Jensen�ms.unimelb.edu.au or
via the world wide web on the URL http:��www.ms.unimelb.edu.au�tiwan�
by following the instructions.
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